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The oscillations of a rigid cruciform symmetric inclusion lying in an unbounded m~ium and to which 

a time-periodic twisting moment is applied are considered. (The plane deformation case is treated.) 

Discontinuous solutions of plane elasticity theory are used (in which displacements and stresses are 

discontinuous along a given line). A system of integral equations for the required discontinuities is 

obtained and solved by the mechanicalquadrature method. The frequency-dependence of the inclusion 

oscillation amplitude is investigated together with the elastic stress density near its ends and the wave 

field in the far zoue. 

1. WE WILL construct a discontinuous solution of a dynamical problem in the theory of elasti- 
city for the case of harmonic oscillations of a medium under plane strain conditions. The 
dis~ntinuities lie in the range x = 0, -a, d y s 4, with jumps (here and henceforth the factor 
e-” is omitted) 

( ax ) = Xl@), ( 7xy ) = x2cyh (u) = x30) 

(0) = x4cyh (f) = f( +o,Y) - f(-O,Y) (1.1) 

The discontinuous solution of the Lame equations for harmonic oscillations under plane 
deformation conditions with discontinuities (1.1) and satisfying the radiation condition at 
infinity is the function 
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.$ 1: x4170 r2& + 2 j----r 7 7 (r2 -rl)dv 
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Here 
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K: = PO”/@ + 2/l), K; = PO’/@ 

+- exp(-ioPc + ip(n -y)) 
r” I = Tj(Q - y, x) = - 

C? + 0’ - K; 
doldp = 

1 
=_ - i@1)[Kj&q-y)2 +X2 1, j = 1,s 

4 

and Qy, X) is a solution of the Helmholtz equation: Apj + $rp = 6(x)6(y). 
The generalized version of the method of integral transformations [l] was applied to con- 

struct the discontinuous solution. 
We consider the discontinuous solution that undergoes the jumps 

byI = cpl(X), by,1 = cpz(x), [ul = P&L bl = %(X1 
[ fl = f(x, +0) - f(x, -O), -112 < x < a2 

in the interval y = 0, -a, =Z x G 4. 
We denote it by 4(x, y) and u,(x, y). It can then be constructed from formulae (1.2) if x,(x) 

is replaced by (p,(x) and the variables x and y are interchanged. Here the formula for u, 
becomes a formula for v, and the formula for u, becomes a formula for 4. 

The discontinuous solutions constructed can be effectively used to reduce problems in the 
theory of elasticity for media containing crack-type defects and thin rigid inclusions to integral 
equations. 

2. We consider the following problem. Suppose that a thin rigid cruciform inclusion is 
situated in an elastic medium and occupies two segments intersecting at the origin of coord- 
inates 

x = 0, -111 S y S a,, y = 0, -a2 S x S a2 

to which a moment Me-‘“’ varying periodically with time is applied. The inclusion will be 
modelled by rectilinear segments on which the stresses are discontinuous 

( 0, ) = Xl@), ( Txy ) = x2@), -a1 G Y G =1 (2.1) 

[ 0.v 1 = cpl(X), Pyxl = cpz(x), -=2 G x s =2 

while the displacements satisfy the conditions 

u(*o, y) = -yy, u(?O, y) = 0, -u1 < y G 11, (2.2) 

U(X, 20) = 7X, U(X, +o) = 0, -Q2 < X < fJ2 

where y is the angle of rotation of the inclusion under the action of the applied moment. 
From symmetry one can show that there are no shear stresses in the contact domain of the 

inclusion and medium, i.e. x2(y) = 0, rp2(x) = 0, and the discontinuities in x1(y) and pl(x) are 
odd. Here the condition that the corresponding displacements in (2.2) must be zero is satisfied 
automatically. 

We will look for the solution of the problem in the form of the sum of two discontinuous 
solutions 

u = u1 t u2, v = u1 + v2 (2.3) 

constructed from formulae (1.2), where one must put x,(y) = 0, rp,(x) = 0, i = 2, 3,4. It has the 
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+a, X1(7)) 
u(xy)= I----- 

-al Elks 
+a2 (P1(17) a2 

+ I- 
-a2 CUCZZ k---- 

axay 

a, Xl(S) 
u(x, Y> = I - 

-cl /lK: 

k‘: 

a2 
Q(l)-Xx,Y) -- axay “l(77 - X? Yl a 

a2 
[----- 

a2 

axaY 
r2(77 - Y, XI - - 

axaY 
r1(77 - Y&l & + 

a2 
15 >r1(rl - x9 Y) -- ax2 r2 (v - x9 Y)l h 

(2.4) 

The function u(x, y) is odd in the variable y, which u(x, y) is odd in the variable x. 
To determine the required discontinuities x1(q) and ~~(17) from the remaining conditions in 

(2.1) one can obtain integral equations. It is more convenient not to use conditions (2.2) 
themselves, but equivalent conditions obtained by differentiating the former 

.;po, y) = -y, -01 < y G al, qx, k0) = 7, -a2 G x G Q2 (2.5) 

Substituting (2.4) into (2.3, we arrive at a system of two integral equations, which after 
reduction to the interval [-1, l] have the form 

+ R(7 - t) + iS(7 - :)] d7 + 

E +1 
t --&&(T) [-(1 - .g2)P(E7, f) + Q(e7, t) + iG(E7, til & = -1 

$ ~:gI(r)[-(l - ,$‘)I’@, et) + Q(7, EI) + G(T, et)] d7 + 

1 +c; t $ $26) I- 
7-f 

t ER(E(7 - t)) + iES(E(7 - t))] d7 = -1 

Here 

a(7) = 

Xl (417) 

P7 ’ 
R2(7) = 

cp1@2 7) 

KY ’ 
P(T, t) = 

$72 - r2) 

(3 t ty 

e=a,, t2 = 
1 - 2v 

R(z) = RI (z) + R,(z) 
6 2(1 - v) ’ 

R,(z) = 2E3(c,, t In tK;‘z ’ ) xJ&) - f Izc,(Ez) 

R2(z) = (Co + ln 
Ko /Zi 

2 
) [ - 2 Z:,(z) + 4zcp (z)] - 2qw + C,(z) 

(2.6) 

S(z) = 71[-2qJz) - Pi, + qdl 

Q(KY) = QI(x.Y) + Q2(x, Y) 
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c 

e,<x, Y) = 2t3 (co + ln y-1 [A 1(x, Y) ~,cs;P) + ‘42(X> Y) ytP)I + 

+ P [-A,@, Y) qw + A 1 (x, Y) 2, (EP)l 

Q2(x,r) = -WO + In ?I M,(X,Y) qJI4 + -42(&Y) Q(P)1 + 

+ A?(& Y) Z,,(P) - A 1 (x9 v) 26 (P) 

W, Y) = = 1 -t3 Pl(x, Y) z:,(W + AZ&Y) C&WI - 

- A I (x, Y) qJ?9 + Az(x* Y) qI-4 i 

ZJZ) = ~laJ$k-l, p = dzq 

-41(&Y) = 
x(x2 - 3Y2) 4xy2 

P3 ’ 
A2(-TY) =- 

P3 

ok 
Crk = - 

ktl ’ pk = /$;r,j!z’x ’ Ak = bk@hk_1 +$) 

6k =$- [4hk --&(u, t +-‘1, h, = 1, hk = I+; t . . . t - : 

Ko = K2Ul, Co = 0.5772157 

(where v is Poisson’s ratio). 
To determine the required constant it is necessary to use the equation of motion of the inclu- 

sion as a rigid body 

e-‘“fM = eeiWtM 
r 
t Jzeo, M = 

I 

where J, is the moment of inertia of the inclusion, l o is the angular acceleration and M, is the 
moment of elastic reaction forces. 

We transform the equation of motion into the form 

Me = y [ i’ fgl(f) df + e2 +I’ t&(t) dt] - ?‘dfi 
-1 -1 

M 
Me = - w: 

(2.7) 

where m, is the mass of the part of the inclusion occupying the interval [-1, l] and p is the 
density of the elastic medium. 

We will construct the solution of the system of integral equations (2.6) numerically using the 
method of mechanical quadratures [2, 31 and the oddness of the functions gI(t) and g2(t). To 
this end we represent the required functions in the form 

gi(r) = (1 - tZ)-~~z~t), i = 1, 2 w9 

and approximate the vi(t) by odd interpolating polynomials of degree 2n-1 constructed with 
respect to the nodes 

q = COSX~, Xl = (21 - 1) n/(4n), 1 = 1,2, . ..) 2n 

These polynomials have the form [4] 
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$i(f) = Lfi_t(f) = z ii Jli(fl) j ICOS(2??I - l)X[Tzm_*(t) 
n I=1 I 

where the T,,(t) are Chebyshev 
Then the following quadrature 

in (2.6) 

polynomials. 
formulae can be obtained for the singular integral operators 

+r 11kr) 
I- 

-17-q 

1 

n 
& = 2n ,Z_ Ajl $j(f/), j = 1, 2, . . . . n 

,=1 

Ail = - 5 
cos(2m - l)xlsin(2m - 1)xj 

n m=i sinxl 

(2.9) 

(2.10) 

(2.11) 

~~(7, t) = p(fl, f), P2(7, t) = P(T Ef) 

$0 = 25 $ (_l)mq;m-q~cos(2m - l)Xl 
n m=l 

plj = de2 + tf, pzj = JV 

qlj = QIj + fj)-‘, q2j = @zj ++ fj)-’ 

b$’ = (2m - 1) fjPlj - E2, bg’ = (2??I - 1) EfjPzj - l 

Replacing the singular integrals in (2.6) by the quadrature formulae (2.10) and (2.11), and 
the regular integrals by Gaussian quadrature formulae [4], and equating the left- and right- 
handsidesfor r=ti (i=1,2,..., n), we obtain a system of linear algebraic equations in the 
wi(rl) (i =l, 2, 1= 1, 2,. . . , n) 

?I 

I: [2(1 + s$‘)Ajl + 
I=1 

t Q(% tj) + iG(w, tj) 
1 ILZ(fl) =-4 

n 

(2.12) 

j, I-2(1 - P)qp t 
Qi?) t iG/.‘) 

I 
n 

n 
1 $I(O) + 2 [2(I + t’)Ajl + 

I=1 

+ E Ri:2’] q2(fl) = -4 

2n 

R$” = R[ Tiyi(t/ - tj)] - R[~i(fl + tj)] , $$ = S[X(f[ - fj)] - S[yi(fl + tj)] 
i = 1,2, y1 = 1, y2 = e 

Q&l’ = Q(et/, ti)* Qf’ = Q(tl, Efj), Gil) = G(~tl, f/), Gf’ = G(f1, Efj) 

Condition (2.7) for determining yacquires the form 

a n 
M* = 7; ,zI tl[‘d’dd + E2!h(tZ)l - ?‘Kf$ (2.13) 

Solving system (2.12), (2.13) using formulae (2.9) and (2.8), we construct an approximate 
solution of the system of integral equations (2.6). 

3. To describe the elastic stress density near the inclusion we introduce the stress intensity 
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factor (SIF) [S] 

The SIF is expressed in terms of the approximate solution of the system of integral 
equations obtained by the following formulae 

E2r n K”(Qj) = fi kj, ki = -- (-0’ 
lf, tij (0) ~ j = 1,2 

n sinxl ’ 
(3.1) 

To describe the wave field far from the inclusion we will obtain an asymptotic formula for 
the displacements ufx, y) and u(x, y). We change to polar coordinates n=Rcos@ and 
y= Rsin6 in (2.4) and let R+ 00. Using the asymptotic expansion of the Hankel function 
together with the approximate solution of the system of integral equations (2.6) we find 

(3.2) 

fk-e) = okI ~0~~6 - EU~~S~II~C~S~ me) = oklsinBcOse - e(Tk2sin2fj 

Qkj = + tjj &(T) ~~~(-j~k~~~o~) dr, k = 1, 2, i = 1, 2 

bl = E, b2 = 1 , ua(~, 6~) = a;h(Rcose, Rsine), u*(R, e) = O(Rcose, Rsine) 

Using the approximate solution constructed, formulae (2.13) and (3.1) were used to investigate the 

dependence of the maximum amplitude of the inclusion oscillations I yl and the maximum absolute 
values of the SIF I kg I, I b I on the parameter he for v= 0.25, M. = 1, /3 = 2. These dependencies are 

FIG. 1. 
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shown in Fig. 1. Curve 1 corresponds to an equal-sided cruciform inclusion (here kI =b), curve 2 
corresponds to a ratio between the sides of E = 0.5, and curve 3 to the case of a single rectilinear inclusion 
(E = 0). The solid curve shows the variation of I kl I and the dashed one shows I k, I. It is clear that as K, 
increases, the quantity I7 I decreases to some value, and then it stabilizes, with all three curves almost 

coinciding. 
As K, increases the SIF up to a certain instant decreases monotonically, and then begins to oscillate. 

For low oscillation frequencies (i.e. for small K,,), the largest stress density is near the rectilinear 
inclusion, and then as rr, increases all the curves become close and intersect one another. 

The wave field far from the centre of the inclusion was also investigated. Figures 2(a) and (b) show the 
dependence of the maximum absolute values of the displacements I u. I and I u. I on the polar angle 
0 S 8 d 7r12 for R,, = 1000, K,, = 3. The notation is the same as in Fig. 1. 
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